1Department of Psychology, College of Social Science, Hallym University, Chuncheon, Korea
2Hallym Applied Psychology Institute, College of Social Science, Hallym University, Chuncheon, Korea
3Korea International University in Ferghana, Ferghana, Uzbekistan
© 2021 Korea Health Personnel Licensing Examination Institute
This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Authors’ contributions
Conceptualization: DS. Data curation: JK. Formal Analysis: JK, DS. Funding acquisition: DS. Methodology: JK, DS. Project administration: DS. Writing–original draft: DS. Writing–review & editing: JK.
Conflict of interest
No potential conflict of interest relevant to this article was reported.
Funding
This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2018S1A5A2A03030006).
Data availability
Data files are available from Harvard Dataverse: https://doi.org/10.7910/DVN/XNKYZS
Dataset 1. Raw data files of Korea medical licensing examination are available from: https://doi.org/10.7910/DVN/PETWZF.
Dataset 2. Q matrix data.
Dataset 3. Item parameters data including slipping and guessing in DINA.
Dataset 4. R code for KMLE real data study.
Content domains | No. of items (%) |
---|---|
C1 | 45 (12.50) |
C2 | 45 (12.50) |
C3 | 45 (12.50) |
C4 | 25 (6.94) |
C5 | 154 (42.78) |
C6 | 20 (5.56) |
C7 | 20 (5.56) |
C8 | 6 (1.67) |
Total | 360 (100.00) |
Content domains | No. of items | # of flagged items in Rasch | # of flagged items in DINA |
---|---|---|---|
C1 | 45 | 0 | 0 |
C2 | 45 | 1 | 0 |
C3 | 45 | 1 | 0 |
C4 | 25 | 0 | 0 |
C5 | 154 | 3 | 10 |
C6 | 20 | 0 | 0 |
C7 | 20 | 0 | 0 |
C8 | 6 | 0 | 0 |
Total | 360 | 5 | 10 |
Item | Attributes |
|||
---|---|---|---|---|
A1 | A2 | A3 | A4 | |
1 | 1 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 |
3 | 1 | 0 | 0 | 0 |
4 | 1 | 0 | 0 | 0 |
5 | 1 | 0 | 0 | 0 |
6 | 0 | 1 | 0 | 0 |
7 | 0 | 1 | 0 | 0 |
8 | 0 | 1 | 0 | 0 |
9 | 0 | 1 | 0 | 0 |
10 | 0 | 1 | 0 | 0 |
11 | 0 | 1 | 0 | 0 |
12 | 0 | 1 | 0 | 0 |
13 | 0 | 1 | 0 | 0 |
14 | 0 | 1 | 0 | 0 |
15 | 0 | 1 | 0 | 0 |
16 | 0 | 0 | 1 | 0 |
17 | 0 | 0 | 1 | 0 |
18 | 0 | 0 | 1 | 0 |
19 | 0 | 0 | 1 | 0 |
20 | 0 | 0 | 1 | 0 |
21 | 0 | 0 | 1 | 0 |
22 | 0 | 0 | 1 | 0 |
23 | 0 | 0 | 1 | 0 |
24 | 0 | 0 | 1 | 0 |
25 | 0 | 0 | 1 | 0 |
26 | 0 | 0 | 1 | 0 |
27 | 0 | 0 | 1 | 0 |
28 | 0 | 0 | 1 | 0 |
29 | 0 | 0 | 1 | 0 |
30 | 0 | 0 | 1 | 0 |
31 | 0 | 0 | 0 | 1 |
32 | 0 | 0 | 0 | 1 |
33 | 0 | 0 | 0 | 1 |
34 | 0 | 0 | 0 | 1 |
35 | 0 | 0 | 0 | 1 |
36 | 0 | 0 | 0 | 1 |
37 | 0 | 0 | 0 | 1 |
38 | 0 | 0 | 0 | 1 |
39 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 1 |
41 | 0 | 0 | 0 | 1 |
42 | 0 | 0 | 0 | 1 |
43 | 0 | 0 | 0 | 1 |
44 | 0 | 0 | 0 | 1 |
45 | 0 | 0 | 0 | 1 |
46 | 0 | 0 | 0 | 1 |
47 | 0 | 0 | 0 | 1 |
48 | 0 | 0 | 0 | 1 |
49 | 0 | 0 | 0 | 1 |
50 | 0 | 0 | 0 | 1 |
Content domains | No. of items (%) |
---|---|
C1 | 45 (12.50) |
C2 | 45 (12.50) |
C3 | 45 (12.50) |
C4 | 25 (6.94) |
C5 | 154 (42.78) |
C6 | 20 (5.56) |
C7 | 20 (5.56) |
C8 | 6 (1.67) |
Total | 360 (100.00) |
Attribute size | Model | Correlation between attributes |
||||
---|---|---|---|---|---|---|
0 | 0.3 | 0.5 | 0.7 | 0.9 | ||
5 items | Rasch | 0.728 | 0.730 | 0.706 | 0.728 | 0.753 |
DINA | 0.728 | 0.738 | 0.717 | 0.738 | 0.753 | |
CTT | 0.632 | 0.623 | 0.621 | 0.614 | 0.611 | |
10 items | Rasch | 0.785 | 0.779 | 0.784 | 0.786 | 0.788 |
DINA | 0.764 | 0.778 | 0.784 | 0.789 | 0.789 | |
CTT | 0.723 | 0.721 | 0.712 | 0.711 | 0.709 | |
15 items | Rasch | 0.813 | 0.821 | 0.812 | 0.814 | 0.821 |
DINA | 0.795 | 0.814 | 0.800 | 0.820 | 0.823 | |
CTT | 0.744 | 0.732 | 0.721 | 0.712 | 0.709 | |
20 items | Rasch | 0.850 | 0.838 | 0.820 | 0.827 | 0.830 |
DINA | 0.819 | 0.820 | 0.819 | 0.832 | 0.836 | |
CTT | 0.766 | 0.755 | 0.743 | 0.742 | 0.731 |
Content domains | No. of items | # of flagged items in Rasch | # of flagged items in DINA |
---|---|---|---|
C1 | 45 | 0 | 0 |
C2 | 45 | 1 | 0 |
C3 | 45 | 1 | 0 |
C4 | 25 | 0 | 0 |
C5 | 154 | 3 | 10 |
C6 | 20 | 0 | 0 |
C7 | 20 | 0 | 0 |
C8 | 6 | 0 | 0 |
Total | 360 | 5 | 10 |
Content domains | CTT and Rasch | CTT and DINA | Rasch and DINA |
---|---|---|---|
C1 | 1 | 0.610 | 0.610 |
C2 | 0.988 | 0.625 | 0.614 |
C3 | 1 | 0.597 | 0.597 |
C4 | 0.965 | 0.581 | 0.547 |
C5 | 0.997 | 0.601 | 0.603 |
C6 | 1 | 0.594 | 0.594 |
C7 | 0.993 | 0.639 | 0.633 |
C8 | 0.469 | 0.720 | 0.541 |
Content domains | CTT and Rasch | CTT and DINA | Rasch and DINA |
---|---|---|---|
C1 | 0.988 | 0.739 | 0.717 |
C2 | 0.994 | 0.761 | 0.755 |
C3 | 0.984 | 0.728 | 0.717 |
C4 | 0.991 | 0.688 | 0.682 |
C5 | 0.990 | 0.796 | 0.786 |
C6 | 0.993 | 0.609 | 0.594 |
C7 | 0.997 | 0.662 | 0.654 |
C8 | 1 | 0.579 | 0.579 |
CTT, classical test theory; DINA, deterministic inputs, noisy “and” gate.
DINA, deterministic inputs, noisy “and” gate.
CTT, classical test theory; DINA, deterministic inputs, noisy “and” gate.
CTT, classical test theory; DINA, deterministic inputs, noisy “and” gate.