1Department of Adolescent Coaching Counseling, Hanyang Cyber University, Seoul, Korea
2Department of Psychology in College of Social Science & Hallym Applied Psychology Institute, Hallym University, Chuncheon, Korea
© 2020, Korea Health Personnel Licensing Examination Institute
This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Authors’ contributions
Conceptualization: YC. Data curation: YC. Formal analysis: YC, DS. Funding acquisition: YC, DS. Methodology: YC, DS. Project administration: YC, DS. Writing–original draft: YC. Writing–review-editing: YC, DS.
Conflict of interest
No potential conflict of interest relevant to this article was reported.
Funding
This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2019S1A5A2A03052192) and supported by the Hallym University research fund (HRF-202011-001).
Data availability
Data files are available from Harvard Dataverse: https://doi.org/10.7910/DVN/X2DRTE
Dataset 1. Raw data files of the Korea Medical Licensing Examination.
Dataset 2. Q matrix data.
Dataset 3. Item parameter data including slipping and guessing.
Dataset 4. Examinees’ mastery profile data.
Content domains | No. of items (%) |
---|---|
C1 | 45 (12.5) |
C2 | 45 (12.5) |
C3 | 45 (12.5) |
C4 | 25 (6.94) |
C5 | 154 (42.78) |
C6 | 20 (5.56) |
C7 | 20 (5.56) |
C8 | 6 (1.67) |
Total | 360 (100) |
Content domains | Classification accuracy | Classification consistency |
---|---|---|
C1 | 0.932 | 0.931 |
C2 | 0.944 | 0.953 |
C3 | 0.939 | 0.945 |
C4 | 0.918 | 0.921 |
C5 | 0.972 | 0.994 |
C6 | 0.885 | 0.874 |
C7 | 0.890 | 0.876 |
C8 | 0.847 | 0.839 |
Content domains | No. of items (%) |
---|---|
C1 | 45 (12.5) |
C2 | 45 (12.5) |
C3 | 45 (12.5) |
C4 | 25 (6.94) |
C5 | 154 (42.78) |
C6 | 20 (5.56) |
C7 | 20 (5.56) |
C8 | 6 (1.67) |
Total | 360 (100) |
Item | Content Domain C1 | Content Domain C2 | Content Domain C3 | Content Domain C4 | Content Domain C5 | Content Domain C6 | Content Domain C7 | Content Domain C8 |
---|---|---|---|---|---|---|---|---|
1 | 0 | 1 | 0 | |||||
2 | 0 | 1 | 0 | |||||
3 | 0 | 1 | 0 | |||||
4 | 1 | 0 | ||||||
… | ||||||||
356 | 0 | 1 | 0 | |||||
357 | 0 | 0 | 1 | 0 | ||||
358 | 0 | 0 | 1 | 0 | ||||
359 | 0 | 0 | 1 | 0 | ||||
360 | 0 | 0 | 1 | 0 |
Item ID | Guessing | Slipping |
---|---|---|
1 | 0.008 | 0.984 |
2 | 0.962 | 0.016 |
3 | 0.191 | 0.796 |
4 | 0.473 | 0.343 |
5 | 0.903 | 0.036 |
6 | 0.801 | 0.075 |
7 | 0.234 | 0.509 |
8 | 0.076 | 0.848 |
9 | 0.906 | 0.035 |
10 | 0.736 | 0.080 |
… | ||
356 | 0.867 | 0.085 |
357 | 0.709 | 0.052 |
358 | 0.808 | 0.048 |
359 | 0.647 | 0.094 |
360 | 0.418 | 0.409 |
Average | 0.647 | 0.228 |
examinee ID | Domain 1 | Domain 2 | Domain 3 | Domain 4 | Domain 5 | Domain 6 | Domain 7 | Domain 8 |
---|---|---|---|---|---|---|---|---|
2939 | 0.999 | 0.999 | 0.995 | 0.899 | 1.000 | 0.965 | 0.995 | 0.860 |
800 | 0.998 | 0.998 | 0.999 | 0.989 | 0.901 | 0.850 | 0.940 | 0.626 |
1689 | 1.000 | 0.997 | 0.997 | 0.838 | 1.000 | 0.886 | 0.996 | 0.820 |
1900 | 1.000 | 1.000 | 1.000 | 0.997 | 1.000 | 0.998 | 0.980 | 0.915 |
… | ||||||||
1559 | 0.996 | 0.998 | 0.995 | 0.877 | 1.000 | 0.898 | 0.992 | 0.683 |
409 | 0.988 | 0.996 | 1.000 | 0.927 | 1.000 | 0.940 | 0.985 | 0.454 |
2625 | 0.992 | 0.998 | 0.998 | 0.995 | 1.000 | 0.989 | 0.984 | 0.859 |
1917 | 0.015 | 0.594 | 0.130 | 0.151 | 0.002 | 0.377 | 0.808 | 0.002 |
509 | 0.112 | 0.135 | 0.007 | 0.053 | 0.004 | 0.002 | 0.166 | 0.008 |
Average | 0.617 | 0.618 | 0.592 | 0.557 | 0.590 | 0.597 | 0.695 | 0.423 |
Content domains | Classification accuracy | Classification consistency |
---|---|---|
C1 | 0.932 | 0.931 |
C2 | 0.944 | 0.953 |
C3 | 0.939 | 0.945 |
C4 | 0.918 | 0.921 |
C5 | 0.972 | 0.994 |
C6 | 0.885 | 0.874 |
C7 | 0.890 | 0.876 |
C8 | 0.847 | 0.839 |